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Improvement of MiRS Sea Surface Temperature
Retrievals Using a Machine Learning Approach

Shuyan Liu , Christopher Grassotti , Quanhua Liu , Yan Zhou, and Yong-Keun Lee

Abstract—We report on the development of a machine learning
approach to improving sea surface temperature (SST) retrievals
based on satellite-based microwave channel measurements at fre-
quencies higher than 23 GHz. The approach uses a deep neural
network (DNN) trained using Microwave Integrated Retrieval Sys-
tem physical retrievals as inputs and collocated European Centre
for Medium-Range Weather Forecasts analyses for training and
validation. The DNN was designed to characterize SST retrieval
residual and then used to correct the original retrieval. Evaluation
based on one year of independent data showed reduction in retrieval
residual standard deviation from 3.22 to 1.80 K in January and
3.02 to 1.92 K in July and reduction in mean residual from 0.30
to 0.08 K in January and 0.61 to 0.22 K in July. Comparisons
with multilinear regression and machine learning approaches that
used measured brightness temperatures as inputs were significantly
less effective in retrieving SST directly, although the DNN used
brightness temperature also showed improvements. This indicates
that physical retrieval provides valuable information useful in char-
acterizing retrieval residual beyond that of the measured radiances.
The DNN approach also effectively removed scan angle dependence
of retrieval residuals—an important consideration with cross-track
instruments. Sensitivity tests indicated that skill declines with time
as time increases from training month, but that skill in the same
month, one year later is nearly the same as that of the original
training month. This suggests that it may be sufficient to pretrain
a stratified model with monthly or seasonal dependence using one
full annual cycle, which could then be used in subsequent years
with continued good performance.
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I. INTRODUCTION

DUE to the longer wavelengths at which they operate,
microwave (MW) sensors have inherent advantages in ob-

serving clouds and precipitation dynamics, monitoring land and
sea surface properties, and estimating profiles of atmospheric
temperature and water vapor under nearly all weather conditions.
The Microwave Integrated Retrieval System (MiRS) 1 retrieves
multiple geophysical parameters from MW observations and has
been an official operational system at the National Oceanic and
Atmospheric Administration (NOAA) since 2007. The MiRS
uses a one-dimensional variational (1DVAR) algorithm to it-
eratively find the optimal solution based on minimizing a cost
function comprised of two terms: departure of the retrieved state
vectors from an a priori climatology background and departure
of forward model simulated radiances from the satellite observed
radiances [1], [2]. Empirical orthogonal functions (EOFs) are
used to further reduce the degrees of freedom in the solution and
stabilize the retrieval [3], [4]. The climatological background
used in MiRS varies with latitude, longitude, season, and time
of day.

MiRS uses the Community Radiative Transfer Model
(CRTM) as the forward operator [5], [6]. Since CRTM computes
radiances and the corresponding Jacobians under clear, cloudy,
and precipitating sky conditions, MiRS performs retrievals in
all these conditions. In addition to all sky conditions, MiRS also
operates over all surface types, namely, ocean, land, ice, and
snow. The parameters directly retrieved in MiRS include: tem-
perature and water vapor vertical profiles, cloud and precipita-
tion parameter vertical profiles, skin temperature, and emissivity
spectrum. These parameters are retrieved simultaneously, and
self-consistency among different parameters is maintained via
both the background a priori constraints and the use of EOFs.
The measurement constraint also ensures that the retrieved so-
lution is consistent with the observed radiances. Once the core
retrieval is completed, postprocessing algorithms are used to
derive additional products, for example, total precipitable water
(TPW) and cloud liquid water are vertically integrated from
water vapor and cloud liquid water content profiles; snow water
equivalent, surface precipitation rate, etc., are determined from

1[Online]. Available: https://www.star.nesdis.noaa.gov/mirs
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Fig. 1. Schematic of MiRS processing components and data flow showing MiRS core retrieval (produced by the 1DVAR) and derived products retrieval (produced
by a postprocessing step). Core products are retrieved simultaneously as part of the state vector. Postprocessing products are derived through vertical integration
or through predefined relationships (i.e., look-up tables or analytic functions) between state vector variables and the derived products.

other algorithms that use the core retrievals [7], [8] as input. A
schematic of the MiRS processing components and data flow is
shown in Fig. 1.

The MiRS algorithm currently runs operationally on pas-
sive MW data from both conically scanning (i.e., DMSP F-17
and F-18 SSMIS, and GPM GMI), and cross-track scanning
(S-NPP and NOAA-20 ATMS, NOAA-18, -19, MetopB,
MetopC AMSUA-MHS) instruments and the retrieval products
are used in operational weather analyses and forecasts routinely.
Additionally, the products are used as inputs to other operational
systems for various applications. For example, the algorithm
to generate multisatellite blended layer precipitable water and
blended TPW products ingests MiRS water vapor profiles and
TPW [9]. The MiRS retrieved temperature and water vapor pro-
files are used as inputs to the Hurricane Intensity and Structure
Algorithm, a tropical cyclone intensity estimation algorithm
that was used operationally at the National Hurricane Center
and developed at the Colorado State University/Cooperative
Institute for Research in the Atmosphere [10]. The NOAA
Climate Prediction Center Morphing Technique Algorithm [11],
[12] uses MiRS precipitation rates are used as one of several
satellite-based precipitation inputs.

In this study, we focus on the core retrieval variable skin
temperature and investigate a means of improving its retrieval
over ocean surfaces that, for the purposes of this discussion,
we refer to by the commonly used term, sea surface tempera-
ture (SST). Minnett et al. [13] provide an excellent review of
satellite-based estimates of SST over more than 50 years. Both
infrared (IR) and passive MW measurements have been used,
with IR-based estimates generally found to be more accurate

than those from MW instruments. Validation studies typically
have found root-mean-square errors with respect to reference
data of IR and MW retrievals to be 0.3–0.5 and 0.6–0.7 K,
respectively. The advantage of IR measurements lies in the much
higher spatial resolution (∼1–5 km) relative to MW observations
(∼25–50 km), but, as is the case with IR retrievals of many
geophysical properties, reliable estimates are only possible in
cloud-free scenes. MW SST retrievals, on the other hand, are
possible in nearly all-weather conditions, with the exception of
scenes containing precipitation.

To our knowledge, nearly all applications of satellite MW
measurements to SST estimation have used conically scanning
instruments (see, for example, [14] and [15]), which have inher-
ent advantages relative to cross-track sensors. The advantages
of conically scanning radiometers are primarily the presence
of orthogonally polarized (vertical and horizontal) channels
at most frequencies with all measurements made at a fixed
angle (and spatial resolution), and the existence of lower fre-
quency channels at 10 GHz and lower, which allows for higher
sensitivity of radiance measurements to changes in SST [16],
[17]. Conversely, cross-track scanning instruments in operation
measure radiances with mixed vertical and horizontal polariza-
tion that changes with scan angle (as does the corresponding
surface emissivity) and normally operate at frequencies starting
at 23 GHz and higher where atmospheric absorption is higher.
Additionally, the spatial resolution of cross-track measurements
varies considerably from near nadir to the edge of scan. All
these factors are challenges to estimating the radiometric sig-
nal of SST. Nevertheless, given the significant number of cur-
rently operational polar-orbiting satellites that carry cross-track
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radiometers (e.g., S-NPP, the NOAA/NASA Joint Polar Satellite
System (JPSS) series satellites, the EUMETSAT MetOp series)
the potential increase in temporal and spatial coverage of reliable
SST estimates in nearly all-weather conditions would be a
benefit to the operational and research community. Cross-track
instruments also feature wider swath widths than conically scan-
ning radiometers, which offer the potential of more complete
spatial coverage over time. In addition, since the MiRS algorithm
utilizes all channel measurements (i.e., both surface sensitive
and sounding channels) to simultaneously obtain a retrieval
solution, and includes a physical accounting of atmospheric
absorption, emission, and scattering via the CRTM forward
model, there may be additional information related to SST yet
to be extracted within the retrieval system.

Machine learning methods interpret data by building mod-
els based on large amount of input datasets without advanced
knowledge and make predictions. Deep neural networks (DNNs)
are one of the most widely used machine learning methods and
are often used in supervised learning problems. In supervised
learning, a training dataset is given in which each set of input
variables (or predictors) is corresponding to an already known
output. The purpose of neural network is to find relationship
between the predictors and the outputs in the training dataset.
When a new dataset is provided (testing dataset), predictions are
made by applying the learned relationship on predictors from the
testing dataset. Neural networks have been widely used in the
retrieval of geophysical parameters based on remote sensing data
and in other atmospheric science fields in recent years [18]–[23],
and have been shown to be remarkably effective in learning
predictive relationships between variables. Recently, Zhou and
Grassotti [24] utilized a DNN to predict the radiometric biases in
ATMS observations; when these bias corrections were applied
within the MiRS system, significant improvements were seen
in sounding products relative to the baseline operational system
that used a static bias correction.

The purpose of this work was twofold: first, demonstrate a
simple proof of concept for the potential of using a machine
learning approach that can leverage the existing information
content present in the MiRS geophysical retrievals to improve
the accuracy of the SST based on 23 GHz and higher, which is
very challenging for SST retrieval. Second, use MW data from
a cross-track radiometer that has a wider swath and a better
global coverage, rather than a conical scanning instrument, to
determine the retrieval performance for this instrument design.
This study explores the feasibility of using higher frequency
channel measurements and cross-track instruments for SST
estimation.

Additionally, perhaps more significantly in the context of
the MiRS algorithm itself, given the importance of accurate
specification of surface conditions to the entire 1DVAR retrieval,
a refinement of the SST retrieval within MiRS, could be used
to further improve the retrieval process within the algorithm by
providing a stronger SST constraint on the variational inversion.

The rest of this article is structured as follows. Sec-
tion II describes the datasets used and the DNN method-
ology employed for the SST improvement. Section III dis-
cusses the results from several retrieval experiments that
were conducted. Finally, Section IV summarizes the work

TABLE I
ATMS INSTRUMENT CHARACTERISTICS

and points to possible future efforts that build on the results
shown here.

II. DATA AND METHODS

A. NOAA-20 ATMS Data and European Centre for
Medium-Range Weather Forecasts (ECMWF) Analyses

NOAA-20 is the second of NOAA’s latest generation of the
U.S. polar-orbiting satellites of the JPSS. The satellite was
launched on November 18, 2017. The ATMS onboard NOAA-20
has 22 channels operating in cross-track scanning mode with
frequencies ranging from 23 to 183 GHz, which allows ATMS to
observe surface conditions under both clear and cloudy sky con-
ditions. Table I provides ATMS channel specification informa-
tion, including central frequency, polarization, noise equivalent
differential temperature, and resolutions at nadir and swath edge.
MiRS uses all of the 22 channels measured radiances as input to
retrieve atmospheric and surface products simultaneously (see
Fig. 1).

The ECMWF operational global analyses 2 are used as a refer-
ence dataset for training and validation. Analyses were available
every 6 h at a resolution of 0.25° in latitude and longitude. For
training and validation, ECMWF analyses were temporally and
spatially interpolated to ATMS measurement locations.

B. SST Retrieval Machine Learning Methods

Three machine learning methods for SST retrievals are devel-
oped and compared in this study. The first method is DNN based
on MiRS retrievals (referred to as DNN-Retrieval hereafter). In
this case, the training target is the original SST retrieval residual,

2[Online]. Available: https://www/ecmwf.int

https://www/ecmwf.int
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defined as the original MiRS SST retrieval minus the collocated
ECMWF SST. The second method is a DNN based on ATMS
observed brightness temperatures (referred to as DNN-TB here-
after), and the third method, also based on ATMS brightness
temperatures, is a multivariate linear regression (referred to
as MLReg-TB hereafter). Both DNN-TB and MLReg-TB use
SST itself as a training target, again coming from the ECMWF
analysis.

The DNN model is trained by using two neural network
layers with 200 nodes in each layer. The activation function
is the rectified linear unit and the optimizer is root-mean-square
propagation (RMSprop) with mean squared error as the conver-
gence metric. The learning rate for RMSprop is set at 0.001. The
number of training epochs is another important factor for neural
networks. Sufficient number of epochs can prevent underfitting,
but can also lead to overfitting. This study chose a sufficiently
large value as the maximum number of epochs, using the widely
used early stopping method to terminate training before over-
fitting occurred and improve the generalization of the trained
model. Possible overfitting is monitored by the validation data,
which is a subset (50% in this study) of the input data. If, after the
specified number of epochs (patience), there is no improvement
using the validation dataset, the training stops. Through trial and
error, the selected values of maximum epochs and patience are
1000 and 100, respectively.

The input variables of features of the three different methods
varied with model. For the DNN-Retrieval model, the following
28 variables were used: cosine of satellite viewing angle, lati-
tude, longitude, MiRS retrieved SST, MiRS retrieved emissivity
for 22 channels, MiRS retrieved CLW, and MiRS retrieved TPW.
The input layers for the DNN-TB and MLRegr-TB models are
the same, and both include the following 25 variables: cosine
of satellite viewing angle, latitude, longitude, and the observed
ATMS brightness temperatures in channels 1–22. Only data
over ocean surfaces were used. All the input variables were
normalized by their respective mean and standard deviation
calculated from the training dataset. Normalizing the data before
training the model effectively improved the learning speed of
the neural network to determine the optimal weights and biases.
Fig. 2 shows the structure of the neural network used in this
study; the input and output layers are illustrated for the case of
the DNN-Retrieval model.

The training dataset is constructed based on 12 days in 2020,
one day in each month, typically the first day. During the model
training process, 50% of the data are randomly selected to build
the model, and the remaining 50% of the data are used for
validation. The total input dataset sample size is ∼21 × 106.
The same model is applied to different days in 2020–2021 for
independent predictions; the predictions dates are the 16th day
of each month. The three tests of DNN-Retrieval, DNN-TB,
and MLReg-TB follow this same data handling method. The
prediction data has the sample size of ∼1.0 × 106.

III. EXPERIMENTAL RESULTS

A. Geospatial Distributions

The geospatial distributions for NOAA-20/ATMS SST pre-
dictions from DNN-Retrieval, DNN-TB, and MLReg-TB

Fig. 2. DNN architecture used in this study. In this example, we use the model
of the DNN-Retrieval experiment to illustrate the input and output layers. See
discussion for details of the input and output layers of each experiment.

for 2021-01-16 and 2021-07-16, which represent northern
hemisphere winter and summer, respectively, are shown in
Figs. 3 and 4. MiRS operational SST retrievals for both days
are also included as well as collocated ECMWF analyses. In
the following discussion, we refer to the difference of the
satellite-based estimate and the ECMWF analysis value as the
residual. For both seasons, the MiRS operational SST retrieval
shows certain retrieval limitations due to ATMS instrument
frequency selection and the cross-track scanning method. For
both descending (nighttime) and ascending (daytime), SSTs are
biased low (relative to the ECMWF analysis) for high latitudes
poleward of 60°N and °S, and show a strong scan dependence
with warmer retrieved SSTs at the swath edge. The ascending
orbit data also shows coastal artifacts due to the land/sea surface
temperature and emissivity contrast, particularly the coastal
regions of northwestern, northern, and northeastern Africa. Both
DNN-Retrieval and DNN-TB correct the aforementioned prob-
lems and an improved global SST distribution with the tropical
warm pool in the western Pacific Ocean and the eastern Indian
Ocean are evident. The MLReg-TB shows improvement of the
cold SST bias for high latitudes relative to MiRS operational, and
it also eliminates the coastal artifacts seen for ascending orbit
retrievals. But the scan position dependence and discontinuities
still exist with swath edge retrievals colder than in the inner
swath, which is contrary to the pattern seen in MiRS operational
retrievals. Since 2021-01-16 is southern hemisphere summer
and 2021-07-16 is northern hemisphere summer, the coastal
artifacts seen in MiRS operational retrievals, which are tied to
the strong land/ocean surface temperature contrast, are more
pronounced near Australia and South Africa for 2021-01-16
and, as mentioned earlier, along the northern Africa coast for
2021-07-16.

B. Density Scatter Distributions and Histograms

Fig. 5 shows SST density scatterplots of ECMWF versus
MiRS operational, DNN-Retrieval, DNN-TB, and MLReg-TB
for the two study days. The MiRS operational retrievals show
a higher degree of scatter when compared with the other three
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Fig. 3. Global SST maps valid 2021-01-16 corresponding to: ECMWF analyses (top row), MiRS operational retrievals (second row), DNN-Retrieval (third row),
DNN-TB (fourth row), MLReg-TB (bottom row) experiments for descending (left column) and ascending (right column), model training using 12 days in 2020.
See discussion for description of each experiment.

algorithms, with cold biases for low SST values. Despite the
underestimation, the overall mean residuals are 0.3/0.6 K and
standard deviations are 3.22/3.02 K for the two days. The
DNN-Retrieval algorithm corrected the residuals seen in the
operational retrievals and shows the best performance overall,

with mean residuals of –0.08/–0.22 K and a residual standard
deviation of 1.80/1.92 K for January/July. The DNN-TB results
show some improvement over the operational retrievals but have
higher errors than the DNN-Retrieval retrievals, with a residual
mean and standard deviation of –0.41/–0.42 and 2.15/2.27 K for
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Fig. 4. Global SST maps valid 2021-07-16 corresponding to: ECMWF analyses (top row), MiRS operational retrievals (second row), DNN-Retrieval (third row),
DNN-TB (fourth row), MLReg-TB (bottom row) experiments for descending (left column) and ascending (right column), model training using 12 days in 2020.
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Fig. 5. Density scatterplots comparing ECMWF analysis SST with retrieved SST from: MiRS operational algorithm (top row), DNN-Retrieval (second row),
DNN-TB (third row), and MLReg-TB (fourth row), model training using 12 days in 2020. Results from 2021-01-16 (left column) and 2021-07-16 (right column)
are shown.

the two days, respectively. The MLReg-TB results also show
large scatter with a warm difference of 0.16 K for 2021-01-16
and cold differences of –0.18 K for 2021-07-16, whereas the
standard deviations are 2.76 and 3.01 K, respectively.

Fig. 6 contains histograms of SST retrieval residuals for each
of the four retrieval experiments on both test days with the bin

size of 0.5 K ranging from –10 to 10 K. The histograms show
that the distribution of the residuals is considerably narrower and
more sharply peaked near zero for both the DNN-Retrieval and
DNN-TB experiments, and that the DNN-Retrieval distribution
is slightly narrower. DNN-Retrieval peaks at –0.5 K for January
and 0 K for July, both days with frequency over 14%. DNN-TB
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Fig. 6. Frequencies of retrieved SST residual for MiRS operational algorithm,
DNN-Retrieval, DNN-TB, and MLReg-TB experiments on 2021-01-16 and
2021-07-16, model training using 12 days in 2020.

peaks at –1.0 K (12.04%) and –0.5 K (13.15%) for January and
July. The MLReg-TB curve is much flatter with lower maximum
values than both of the DNN experiments. For January 16,
frequencies from –1.0 to 0.0 K are all over 8% with the maximum
value of 8.79% at –0.5 K. For July 16, the maximum value
for MLReg-TB is 7.2% at –0.5 K and the second largest value
is 7.1% at –1.0 K, all the other frequencies are less than 7%.
MiRS operational has its highest frequency of 7.38% at 0.0 K
for January. For July, the highest frequency of MiRS operational
is 8.22% at 0.5 K with 8.2% at 0 K.

C. Performance Time Series

Time series of SST residuals and difference standard de-
viations for each of the prediction days from 2020-01-16 to
2021-07-16 are shown in Fig. 7. MiRS operational retrievals
are warmer than ECMWF across the whole year with slightly
smaller residuals in April. In contrast, DNN-TB retrievals are
consistently colder than ECMWF with the only exception in
February. In terms of standard deviation, the DNN-Retrieval
approach showed consistently smaller values than the other
three algorithms, with the maximum standard deviation value of
2.16 K in February 2021. The DNN-Retrieval approach results
in significantly improved SST retrieval performance over the
entire 21-month period.

D. Scan Angel Dependence

As noted, the MiRS operational and MLReg-TB retrievals
showed strong scan dependence as shown in the geospatial

distribution maps contained in Figs. 2 and 3. To quantify this
behavior, Fig. 8 shows the mean residuals and residual standard
deviation as a function of satellite zenith angle from –65° to 65°.
The operational and MLReg-TB retrievals exhibit strong scan
position dependence with the largest residual located at larger
angles (i.e., the swath edge). In addition, the MLReg-TB re-
trievals show seasonal dependence with January and July having
an opposite mean residual sign at the scan edges. The operational
bias variations are similar between the two days, with both
showing an increased warmer difference near the scan edges.
The DNN-Retrieval SST retrievals show significantly improved
performance relative to the operational retrievals, and contain
only slight angle dependence, whereas the DNN-TB residuals
are nearly constant across all angles, indicating little angle
dependence. Mean residuals and residual standard deviations
for January and July show that both DNN-Retrieval and DNN-
TB have little to no scan dependence, whereas DNN-Retrieval
algorithm exhibits the lowest standard deviation for all angles.

E. Impact of Intra-Annual Variability

The preceding analysis has indicated that the DNN-Retrieval
exhibits the best SST performance among the four algorithms
studied. The training of the model was based on 12 days from the
year 2020 in order to capture the annual climatology. In order to
assess the impact of targeted training optimized to capture the
intra-annual variability, we used the same DNN-Retrieval model
design but trained two models using one single day of global
data from 2020-01-01 and 2020-07-01. We then applied the
two models to independent days from the same corresponding
months in 2021 to assess the performance. Fig. 9 compares the
SST residual and difference standard deviation over the period
January 2020 to September 2021 (one day per month, for a
total of 21 days) for three algorithms: MiRS operational, and
predictions from the model trained on 2020-01-01 and 2020-
07-01, respectively. First, as noted above, the DNN-Retrieval
performance is always better than operational. Second, it is seen
that the performance of the DNN-Retrieval is optimum (smaller
residual mean and standard deviation) in the portion of the year
close to the corresponding training date, and degrades slightly
as time increases away from the training dates. In summary,
better performance is achieved when prediction and training
are within the same season. This suggests that an operational
implementation that stratifies training monthly or seasonally will
have the best overall performance.

This is further confirmed in Fig. 10, which is the density
scatterplot of ECMWF SST versus DNN-Retrieval SST for
2021-01-16 and 2021-07-16 using the model trained on data
from the same month, but one year earlier, i.e., 2020-01-01 and
2020-07-01.

Comparing with DNN-Retrieval predictions based on the 12-
day model (see Fig. 5), both mean residuals and residual standard
deviations are improved. The mean residuals are improved from
–0.08 to 0.03 K for January, and from 0.22 to –0.15 K for July.
Similarly, the residual standard deviation is improved from 1.80
to 1.67 K and 1.92 to 1.46 K for January and July, respectively.

Finally, Fig. 7 also contains results from training a DNN-
Retrieval model with stratified training in which a separate DNN
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Fig. 7. Time series of SST retrieval residual and difference standard deviation with respect to ECMWF analyses for the 19 prediction days in 2020 to 2021,
based on model training using 12 days in 2020. Results are shown for: MiRS operational algorithm, DNN-Retrieval, DNN-TB, and MLReg-TB. See discussion
for description of each experiment.

Fig. 8. Satellite zenith angle dependence of SST retrieval bias and difference standard deviation with respect to ECMWF analyses. Results are shown for: MiRS
operational algorithm, DNN-Retrieval, DNN-TB, and MLReg-TB, model training using 12 days in 2020.



1866 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 15, 2022

Fig. 9. Time series of SST retrieval performance with respect to ECMWF
analyses from January 2020 to September 2021. Results are shown for: MiRS
operational algorithm and DNN-Retrieval trained using data from 2020-01-01
and 2020-07-01, respectively.

was developed for each month using only that month’s data
(but from one year earlier) for training. It can be seen that the
stratified DNN mean residual and residual standard deviation are
consistently lower in each month than the single DNN-Retrieval
model trained on the 12 months of data. In practice, a moving
window for training with overlapping time periods would likely
minimize any temporal discontinuities in retrievals as one moves
from one month to the next.

IV. SUMMARY AND CONCLUSION

This article described a method for characterizing and correct-
ing the residual in MiRS retrieved SST. The method used a DNN
trained and validated with collocated MiRS NOAA-20 ATMS
retrievals and ECMWF operational global analyses. For com-
parison, two other predictive models were also trained, which
used observed ATMS brightness temperatures directly, a DNN
and a multilinear regression model. Training data were taken
from the year 2020, and independent validation experiments
were run using independent 2020 to 2021 data. Regardless of the
training and validation time period chosen, the DNN-corrected
MiRS retrievals showed the best performance with a signif-
icant reduction of residual and standard deviation relative to
the ECMWF analysis reference, and a significant reduction of
scan angle-dependent artifacts. It appears that inclusion of the
geophysical information already extracted from the brightness
temperatures by the MiRS 1DVAR retrieval provides valuable
information that can be exploited by the DNN to produce a
much improved SST estimate. Sensitivity tests indicated that,

Fig. 10. Density scatterplots of ECMWF analysis SST versus retrieved SST
on independent test days of 2021-01-16 and 2021-07-16, in which two DNN-
Retrieval models were trained on data from January and July 2020, respectively.

while training the model using one month’s data results in a
DNN prediction that loses skill within two to three months from
the training month, the same model retains a high level of skill
when applied to data exactly one year later. This suggests that
for operational purposes, it may be sufficient to train a static
model using (approximately) monthly data for one full annual
cycle.

The method developed in this study is based on MW fre-
quencies greater than or equal to 23 GHz and has higher mean
residual and residual standard deviation than 10 GHz dominated
methods, which is to be expected. The results presented here
should be seen as a preliminary proof of concept in that testing
on additional time periods and more careful validation proce-
dures will be required. Incorporation of alternate reference data
for training and/or validation would help to further gauge the
sensitivity of the method to training data and to better quantify
the accuracy of the retrievals. In particular, the use of in situ buoy
measurements [25], or gridded SST analyses such as those from
the Canadian Meteorological Centre [26], [27], or the NOAA
daily Optimum Interpolation Sea Surface Temperature [28], [29]
would be highly desirable. Finally, in the context of the MiRS
retrieval itself, the approach described here could be used to
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enhance the overall MiRS retrievals, beyond simply improving
the SST. Since the 1DVAR is a simultaneous physical retrieval,
using a more accurate SST (the DNN correction process is
computationally rapid) as input to a second 1DVAR retrieval
with an improved surface temperature constraint could yield
improvements to other components of the geophysical state
vector. Planning for this future application is currently underway.
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